

The figure above shows a graph of the form $y = a \sin n(x - \varepsilon) + c$. The values of a, n, ε and c respectively are:

A $-2, 4, 0.25\pi, -6$ B $2, 4, 0.5\pi, -6$ C $-2, 2, 0.25\pi, -6$ D $2, 2, 0.25\pi, -6$ E $-2, 2, 0.5\pi, -6$

Q2

If an equation is in the form $y = a \cos n(x - \varepsilon) + c$ and the amplitude is 2, the period is 3π , there is an downward shift of 1 and a shift to the left of $\frac{\pi}{6}$, then the actual equation is:

A	$y = 2\cos\frac{2}{3}(x + \frac{\pi}{6}) - 1$
В	$y = 2\cos\frac{3}{2}(x - \frac{\pi}{6}) - 1$
С	$y = 2\cos(\frac{2}{3}x + \frac{\pi}{6}) - 1$
D	$y = 2\cos(\frac{2}{3}x - \frac{\pi}{6}) - 1$
E	$y = 2\cos\frac{2}{3}(x + \frac{\pi}{4}) - 1$

The figure above shows a graph of the form $y = a \cos nx$. The values of *a* and *n* respectively are:

A	2 and 3π
В	2 and $\frac{\pi}{3}$
С	2 and 3
D	2 and $\frac{2}{3}$
E	2 and $\frac{1}{3}$

Q4

If $f(x) = \cos x$ and $g(x) = x^2$ then $f(g(\frac{\pi}{3}))$ is equal to:

A
$$\cos(\frac{\pi^2}{9})$$
 B $\frac{1}{\sqrt{2}}$ **C** $\frac{1}{4}$ **D** $\frac{3}{4}$ **E** $\frac{4}{3}$

Q5

The range of the function $f: R \rightarrow R, f(x) = 2 |\sin x| + 3$ is:

A
$$[0,3]$$
 B $[-1,5]$ **C** $[-1,3]$ **D** $[3,5]$ **E** $[0,5]$

Q6

The rule for the inverse of the function with rule $f(x) = 10^{ax} + b$ is given by:

A
$$f^{-1}(x) = \frac{1}{10^{ax} + b}$$

B $f^{-1}(x) = 10^{-ax} - b$
C $f^{-1}(x) = a \log_{10} (x - b)$
D $f^{-1}(x) = \frac{1}{a} \log_{10} (x + b)$
E $f^{-1}(x) = \frac{1}{a} \log_{10} (x - b)$

Solve each of the following the equations for *x*:

- **a** $2^{2x} 6 \times 2^x + 8 = 0$ for x
- **b** $5^{2x} 6 \times 5^x + 9 = 0$
- c $\log_{10}(x) + 2\log_{10}(5) = \log_{10}(6)$
- $\mathbf{d} \quad \log_3\left(x-a\right) = b$
- **e** $2 \log_3(x) + \log_3(a) = 0$
- $\mathbf{f} \quad 2\log_e(x) + \log_e(a) = 0$

Q8

The graph above represents the inverse of:

A $y = e^{x} - 2$ B $y = e^{x} + 2$ C $y = e^{(x+2)}$ D $y = 2 - e^{x}$ E $y = e^{(x-2)}$

Q9

F Solve the equation $\log_{10}(10 + 5x) - \log_{10}(10 - 2x) = 1$ for *x*.

Q10

- a. For the functions *f* and *g*, *f*: $R \rightarrow R$, $f(x) = e^x$ and $g:[0, 2] \rightarrow R$, g(x) = 2x, state the rule, maximal domain and corresponding range of the following functions:
- b. af(g(x))
- c. $\mathbf{b}(f+g)(x)$
- d. **c** (*fg*)(*x*)

Q11

On the same set of axes, sketch the graphs of $y = 3\cos 4x$ and $y = 2\sin 4x$ between

 $x = -\pi$ and $x = \pi$. Find the points of intersection.

Q7

Q12

For the pair of functions $f(x) = -2\cos(x) + 1$ and $g(x) = e^{\frac{1}{4}x}$:

- (a) show that f(g(x)) is defined
- (b) find f(g(x)) and state its domain

Q13

The temperature $T \circ C$ inside a house at time t hours after 6.00 am is given by

$$T = 18 - 4\cos\frac{\pi t}{12}$$
 for $0 \le t \le 24$.

The temperature θ °C outside a house at time *t* hours after midnight is given by

$$\theta = 11 - 6\cos\frac{\pi t}{12}$$
 for $0 \le t \le 24$.

If the difference between the inside and outside temperatures can be represented by $D = T - \theta$, sketch the graph of *D*.

Determine when the difference between the inside and the outside temperature is less than 6°C.

Q14

For $f: (0, \infty) \to R$, $f(x) = \log_e (2x)$ and $g: R \to R$, $g(x) = e^{x+1}$:

- **a** find f(g(x)) and g(f(x)) and express each in the form mx + c where m and c are constants
- **b** sketch the graph of y = f(g(x)) and y = g(f(x))
- **c** find $g^{-1}(x)$